Mantle hydration and Cl-rich fluids in the subduction forearc
نویسنده
چکیده
In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for a given thermal state through variations of fluid salinity. High-Cl fluids produced by serpentinization can mix with the source rocks of the volcanic arc and explain geochemical signatures of primitive magma inclusions. Signature of deep high-Cl fluids was also identified in forearc hot springs. These observations suggest the existence of fluid circulations between the forearc mantle and the hot spring hydrothermal system or the volcanic arc. Such circulations are also evidenced by recent magnetotelluric profiles.
منابع مشابه
Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone
It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this...
متن کاملEvidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica
[1] Characterizing the hydration state of the forearc mantle wedge yields valuable information on frictional stability at the downdip edge of subduction megathrusts. Simultaneous inversion of Pand S-wave arrival times collected as part of the Costa Rica Seismogenic Zone Experiment yields 1D and 3D Pand S-wave velocity models (VP and VS) for the Nicoya Peninsula segment of the Middle America Tre...
متن کاملPreface for the article collection “High-Pressure Earth and Planetary Science in the last and next decade”
Preface A special session entitled “Early Earth from accumulation to formation-” was held on May 24, 2015 during the Japan Geoscience Union (JpGU) annual meeting. This session aimed to bring together high-pressure/hightemperature experiment on physics and chemistry of deep Earth materials, natural observation, and theoretical modeling within the principal subject areas of “Early Earth” research...
متن کاملThe chemistry of subduction-zone fluids
Subduction zones generate voluminous magma and mediate global element cycling. Fluids are essential to this activity, yet their behavior is perhaps the most poorly understood aspect of the subduction process. Though many volatile components are subducted, H2O is the most abundant, is preferentially fractionated into the fluid phase, and, among terrestrial volatiles, is by far the most effective...
متن کامل